Post here.

TL;DR When using tf.estimator, use the normalizer_fn argument in tf.feature_column.numeric_feature to normalize using the same parameters (mean, std, etc.) for training, evaluation, and serving.

def zscore(col):
  mean = 3.04
  std = 1.2
  return (col  mean)/std
feature_name = total_bedrooms
normalized_feature = tf.feature_column.numeric_column(
  feature_name,
  normalizer_fn=zscore)